Events and Actions Technical
Information

Last Modified on 12/14/2025 8:45 pm CST

What is Events and Actions (EA)? | Stored Proc Parameters and Potential Values | Examples of
Events and Actions | Tips and Tricks | JISON String Parsing Examples

What is Events and Actions (EA)?

An Event is a save or delete on a record in the Infinite Campus SIS product. This includes inserts
and updates. An Action is an email or execution of a stored procedure. Multiple actions can be
executed. Events can have multiple Actions.

Emails can be sent to people in a user group or a query of people with user accounts. A user must
have a user account and an email in Infinite Campus.

Stored Procedures (proc) are used to run a query to insert, update, or delete records.

Email to Student

Email to Parent

New Enroliment

Email to Counselor

Stored proc to update data

Four areas of Events and Actions can use a stored proc: condition, action, user query, and query.

1. Event - Conditional - After selecting the table, column, and potentially the field value
change, use a stored proc to further filter the results of the affected data (for example, after a
new enrollment is created, find only students that have never been enrolled in the district
before).

2. Action - Action - Instead of choosing to send an email, a stored proc can be selected to run a
query to perform an action (for example, when a new transcript record is added, check if any
courses are repeated and, if so, remove the GPA weight of the lower of the two scores so that
the lower grade does not negatively affect the student's CUM GPA).

3. Action - User Query (recipients) - Users can choose either a user group or stored proc. The
stored proc option can be anyone with an Infinite Campus user account and email. i.e. Parent,
counselor, case manager, teacher.

4. Action - Query - (email fields) - Out of the box, the email body does not contain any ad hoc
fields for selection. All data in the email body must be derived from a stored proc (for
example, “Hello, your student <studentname> was late to school today <date> at <time of
day>."). It may be useful to have a standard query to pull basic demographic information

Page 1

http://kb.infinitecampus.com/#what-is-events-and-actions-ea?
http://kb.infinitecampus.com/#stored-proc-parameters-and-potential-values
http://kb.infinitecampus.com/#examples-of-events-and-actions
http://kb.infinitecampus.com/#tips-and-tricks
http://kb.infinitecampus.com/#json-string-parsing-examples

that can be used for many emails.
When an event is triggered, the parameters that are passed to each stored proc are the following:

¢ @IC_EVENT_ACTION_TYPE CHAR(1),
¢ @IC_EVENT_TIMESTAMP DATETIME,
¢ @IC_EVENT TABLE VARCHAR(128),
e @IC_EVENT COLUMN VARCHAR(128),
e @IC_EVENT KEY_ID INT,

e @IC_EVENT PERSON_ID INT,

e @IC_EVENT_CALENDAR_ID INT,

¢ @IC_EVENT_SCHOOL_ID INT,

¢ @IC_EVENT_DISTRICT_ID INT,

o @IC_EVENT_DATA VARCHAR(MAX),
e @IC_EVENT_USER_ID INT,

e @IC_EVENT TOOL_ID VARCHAR(50)

Not all parameters will have values passed. This is dependent on the type of event that occurs and
the table that was triggered on. These values can be used to filter the query results of the stored
proc.

Stored Proc Parameters and Potential
Values

Field Description
IC_EVENT_ACTION_TYPE | = Insert, U = Update, D = Delete

IC_EVENT_TIMESTAMP 2020-09-15 00:00:00.000 - The date that the event was triggered

on.
IC_EVENT _TABLE The table that was triggered.
IC_EVENT_COLUMN The column that was triggered. Values can be NULL.
IC_EVENT_KEY_ID The primary key value of the table triggered on.

IC_EVENT_PERSON_ID The personID that the event was triggered on. Values can be
NULL.

IC_EVENT_CALENDAR_ID The calendarID on the record that was triggered. Values can be
NULL.

IC_EVENT_SCHOOL_ID The schoollD on the record that was triggered. Values can be
NULL.

IC_EVENT_DISTRICT_ID The districtID on the record that was triggered. Values can be
NULL.

IC_EVENT_DATA The JSON string of data that was changed.

Page 2

IC_EVENT_USER_ID The userlD of the person that triggered the event.

IC_EVENT_TOOL_ID The toollD that was used to trigger the event.

In the example below, an Event was created to trigger when a new fee assignment was created. A
conditional stored proc was added to filter out any fee assignment flagged as exempt. These are
the values that were passed to the conditional stored proc.

IC_EVENT_ACTION_TYPE: |
IC_EVENT_TIMESTAMP: 2022-03-14 00:00:00.000
IC_EVENT _TABLE: dbo.FeeAssignment
IC_EVENT_COLUMN: NULL

IC_EVENT_KEY_ID: 28163

IC_EVENT_PERSON_ID: 4371
IC_EVENT_CALENDAR_ID: 250
IC_EVENT_SCHOOL_ID: NULL

IC_EVENT _DISTRICT_ID: NULL

IC_EVENT _DATA: {"old": null, "new": { "assignmentID":28163, "calendarlD":250, "personID":4371,
"feelD":62, "dueDate":"2022-03-16T00:00:00", "amount":50.00, "createdByID":49574,
"createdDate":"2022-03-16T13:22:00", "modifiedByID":49574, "modifiedDate":"2022-03-
16T13:22:00" }}

IC_EVENT USER_ID: 27317
IC_EVENT_TOOL_ID: 696

Below is the conditional stored proc. Notice that the only parameter used to filter on is the
@IC_EVENT_KEY_ID which is the feeassignmentID. We can derive the personID of the student that
the fee was created for by filtering on this value.

Page 3

CREATE PROCEDURE [cust].[condition_NewFeeAssignment]
@IC_EVENT ACTION_TYPE CHAR(1),
@IC_EVENT_TIMESTAMP DATETIME,
@IC_EVENT TABLE VARCHAR(128),
@IC_EVENT_COLUMN VARCHAR(128),
@IC_EVENT_KEY_ID INT,

@IC_EVENT PERSON_ID INT,
@IC_EVENT_CALENDAR_ID INT,
@IC_EVENT_SCHOOL _ID INT,
@IC_EVENT _DISTRICT_ID INT,
@IC_EVENT_DATA VARCHAR(MAX),
@IC_EVENT USER_ID INT,
@IC_EVENT_TOOL_ID VARCHAR(50)

AS

SELECT p.personiD

FROM person p

INNER JOIN [identity] i ON i.identitylD = p.currentidentitylD

INNER JOIN enrollment e ON e.personID = p.personlD

INNER JOIN feeassignment fa ON fa.personlID = p.personID
AND fa.calendarID = e.calendarlD

INNER JOIN fee f ON f.feelD = fa.feelD

WHERE 1=1

AND COALESCE(fa.exempt, 0) = 0

AND fa.assignmentID = @IC_EVENT_KEY_ID

It is recommended that when creating new Events and Actions to select the Enable Debug Logging
Today on the event. This will allow you to see what happened when the event triggered any status
of the actions.

Event Detail

Name * Active

l =

Description

Table *

Column Conditional Stored Procedure

|' v| [-]
Operation Performed * Enable Debug Logging Today)
() Insert

() Update
() Delete

Before Value

After Value

Once an event is triggered, the Campus Event Log table can be queried to review the results of the
task.

Enable Debug Logging Today, when checked, will automatically turn off each night. The log will

Page 4

only keep records in the table for seven days. This was done to keep the size of this table low.

SELECT * FROM CampusEventLog ORDER BY 1 DESC

3 Femts iy Mesages
ers_'fligl_l)_ evertlD timestamp logTet
73 20220314 09.54.05453 Processing event triggered on dbo. HoussholdMember table_ 1D 335. Condtion check passed. Procassing action 10 82 sql type. SQL procedure cust action_ALL Events executed.

2 867 57 20220316 08:53.37440 Processing event tiggered on dbo_FeeAssignment table, ID 28162. Condiion check passed. Processing action 1D 68 emal type. Found 1 potential emad recipients. Email given to messenger for sending.

After the creation of the stored proc in the “cust” schema, the stored proc must be added to the
campusEventProcedure table. Adding the procedure to this table will tell Events and Actions where
to display the procedure.

procedure = Name of procedure

displayName = What the user will see Events and Actions drop lists.
hidden = Always 0

procType - condition, action, userquery, query

Schema -cust

Premuim - Always = 0

displayName hidden procType schema premium

condtion cust 0

Examples of Events and Actions

1. Email a student and parent(s) when an assignment is marked as missing.

2. Email a parent when a progress grade fails below the passing score.

3. Email a parent when a student has a daily health screening that would require a student to be
placed on quarantine. Then create a “Quarantine flag that is valid for 14 days. An ad hoc filter
can be created to only allow students who are not quarantined to enter (scan) into the
building using Advanced Attendance and Appointments.

4. When transcript records are posted, run a stored proc to remove GPA weight for all repeated
courses of the lower score.

Tips and Tricks

All stored procs should be created with a naming convention to visually distinguish what kind of
proc it is, such as condition_NameofProc or action_NameofProc. This will sort each of the procs in
alpha order and they can more easily be found when looking in the cust schema in the database. It
is recommended that when adding the stored proc to the CampusEventProcedure table you use
the same value for the proc name and the display name. There is no reason to have different

Page 5

values. End users will never see either of these names and using that same value will make it
easier to troubleshoot when you are having issues. You may also use your district number or the
name of your organization to the proc name as well.

Cust.action_ISD279 NewfeeAssignment

Object Explorer

Connect~ %7 8J « ¥ ¢ &

= [Stored Procedures
1 System Stored Procedures

[£] cust.action_addmessage
&l cust.action_CovidFlag
[£] cust.condition_ALLEvents
[£] cust.condition_Covid

When creating an event, for example on the attendance table, and you want to track inserts,
updates, or deletes, make sure that you trigger on a value that changes like excuselD versus
attendancelD. If you only select the primary key to trigger on, you will not get a notification due to
the primary key not changing when a record is updated.

Create a custom table and stored proc to insert each parameter passed for testing and
troubleshooting.

Table:

CREATE TABLE [dbo].[eventsActions](
[ea_ID] [int] IDENTITY(1,1) PRIMARY KEY NOT NULL,
[IC_EVENT_ACTION_TYPE] [char](1) NULL,
[IC_EVENT TIMESTAMP] [datetime] NULL,
[IC_EVENT _TABLE] [varchar](128) NULL,
[IC_EVENT _COLUMN] [varchar](128) NULL,
[IC_EVENT_KEY_ID] [int] NULL,
[IC_EVENT_PERSON_ID] [int] NULL,
[IC_EVENT CALENDAR_ID] [int] NULL,
[IC_EVENT_SCHOOL_ID] [int] NULL,
[IC_EVENT _DISTRICT_ID] [int] NULL,
[IC_EVENT_DATA] [varchar](max) NULL,
[IC_EVENT_USER_ID] [int] NULL,
[IC_EVENT TOOL ID] [varchar](50) NULL

GO

Stored Proc:

CREATE PROCEDURE [cust].[condition_ALLEvents]
@IC_EVENT_ACTION_TYPE CHAR(1),
@IC_EVENT_TIMESTAMP DATETIME,
@IC_EVENT_TABLE VARCHAR(128),
@IC_EVENT_COLUMN VARCHAR(128),
@IC_EVENT_KEY_ID INT,
@IC_EVENT_PERSON_ID INT,
@IC_EVENT_CALENDAR_ID INT,
@IC_EVENT_SCHOOL_ID INT,
@IC_EVENT_DISTRICT_ID INT,

Page 6

@IC_EVENT_DATA VARCHAR(MAX),
@IC_EVENT_USER_ID INT,
@IC_EVENT TOOL_ID VARCHAR(50)

AS

INSERT INTO [dbo].[eventsActions]
([IC_EVENT_ACTION_TYPE]
J[IC_EVENT _TIMESTAMP]
J[IC_EVENT_TABLE]
L[IC_EVENT_COLUMN]
JIC_EVENT_KEY_ID]
L[IC_EVENT_PERSON_ID]
L[IC_EVENT_CALENDAR _ID]
JIC_EVENT_SCHOOL _ID]
L[IC_EVENT _DISTRICT_ID]
L[IC_EVENT DATA]
J[IC_EVENT_USER_ID]
J[IC_EVENT TOOL ID])
SELECT
@IC_EVENT_ACTION_TYPE,
@IC_EVENT TIMESTAMP,
@IC_EVENT_TABLE,
@IC_EVENT_COLUMN,
@IC_EVENT_KEY_ID,
@IC_EVENT_PERSON_ID,
@IC_EVENT _CALENDAR_ID,
@IC_EVENT_SCHOOL_ID,
@IC_EVENT _DISTRICT_ID,
@IC_EVENT_DATA,
@IC_EVENT_USER_ID,
@IC_EVENT TOOL _ID

SELECT 1
Insert Proc into CampusEventProcedure table:

INSERT INTO CampusEventProcedure ([procedure], displayname, hidden, procType, [schemal])
VALUES ('condition_ALLEvents','condition_ALLEvents', 0, 'condition’, 'cust')

The stored proc will now be available to be selected in the event.

A question that is commonly asked is how to trigger something that has not happened. For
example: | would like to send an email reminder to students that an assignment is nearing its due
date. Nothing has been triggered to initiate the event, so how could this be accomplished? Another
example would be that a district would like to email every principal at the end of the school day a
summary/total of things that occurred during that school day like:

New enrollments

End dated enroliments

Behavior events

Students marked as a full-day absent

Events and Actions is not a scheduled process, but rather a process that is triggered when a user
has done something, such as a user clicking save.

One potential way to make this happen is to create a query to locate the data you are looking for

Page 7

and have this query insert values into a custom table via the Task Scheduler. The task is
scheduled to run every day at 4:00 PM. When the task scheduler job is executed, and records are
inserted into a custom table, an Event and Action can be created to trigger on when values are
inserted into that table and perform an action. So, by using the task scheduler to insert rows into a
custom table, we are triggering an event when that insert occurs.

JSON String Parsing Examples

When using EA, the value in using the parameter @IC_EVENT_DATA may not seem inherent. This
can be due to not being familiar with JSON strings. After using EA more frequently, there will be a
need to test for the new values being inserted or what the values are being updated to. An EA
could be triggering on a table insert or update and three separate columns will need to be
checked, so the single column selection with the before and after values will not suffice, and a
condition stored proc will be needed.

A specific example is an EA that was created to trigger on the identity table looking for students
that had the First Language, Home Language, or Language with Friends values inserted or updated
to something other than English or American Sign Language. (These questions may vary by state).
In the first version, after triggering on an identity insert or change, a condition checks for students
that have one of these three values.

WHERE 1=1

AND (i.homePrimaryLanguage NOT IN (‘EN', 'XA")
OR i.languageAlt NOT IN ('EN', 'XA")

OR i.languageAlt2 NOT IN (‘EN', 'XA"))

AND p.personID = @IC_EVENT_PERSON_ID

All tests were done changing one of these values, so everything appeared to be working as
desired. Once the customer turned this EA on, they immediately received word from someone who
stated that a value on the identity was changed, but not one of the values that was being tested
for and they received a notification. The issue was that although the student did trigger properly
on an identity change, it passed the condition query because the student did have one of these
three values previously set, but not by this specific identity change, so the WHERE clause was
changed to ONLY look for the values in the JSON/IC_EVENT_DATA string parameter.

WHERE 1=1

AND (JSON_VALUE(@IC_EVENT DATA, '$.new.homePrimaryLanguage') NOT IN (‘EN', 'XA")
OR JSON_VALUE(@IC_EVENT_DATA, '$.new.languageAlt') NOT IN ('EN', 'XA")

OR JSON_VALUE(@IC_EVENT_DATA, '$.new.languageAlt2') NOT IN ('EN', 'XA"))

AND p.personID = @IC_EVENT_PERSON_ID

By switching to testing the actual data that was changed, the condition stored proc was now
filtering out any change made to the identity table that was not one of these three fields.

An ldentity event update with a first name change would appear like this. Here is the JSON /
IC_EVENT_DATA string parameter.

{"old": { "identityID":52092, "personlD":49453, "effectiveDate":"2019-07-21T00:00:00", "lastName":"Milton",
"firstName":"Geraldd", "middleName":null, "suffix":null, "alias":null, "gender":"M", "birthdate":null, "ssn":null, "raceEthnicity":"5",
"birthCountry":null, "dateEnteredUS":null, "birthVerification":null, "comments":null, "districtID":52, "hispanicEthnicity":"N",
"identityGUID":"94B1D24A-D8A9-41B9-967D-B47D8A932994", "lastNamePhonetic":"MILTON", "firstNamePhonetic":"GARALD",

Page 8

"dateEnteredState":null, "birthCertificate":null, "immigrant":null, "dateEnteredUSSchool":null, "raceEthnicityFed":null,
"raceEthnicityDetermination":null, "birthStateNoSIF":null, "birthCity":null, "birthCounty":null, "modifiedByID":49374,
"modifiedDate":"2022-03-09T14:41:00", "birthVerificationBIE":null, "refugee":null, "homePrimaryLanguage":null,
"stateHispanicEthnicity":null, "birthState":null, "homePrimaryLanguageBIE":null, "homeSecondaryLanguageBIE":null,
"languageAlt":null, "languageAlt2":null, "foreignLanguageProficiency":false, "literacyLanguage":false, "legalFirstName":null,
"legalLastName":null, "legalMiddleName":null, "legalSuffix":null, "legalGender":null, "usCitizen":null, "visaType":null,
"originCountry":null, "hispanicWriteIn":null, "asianWriteln":null, "caribbeanWriteln":null, "centralAfricanWriteln":null,
"eastAfricanWriteln":null, "latinAmericanWriteln":null, "southAfricanWriteln":null, "westAfricanWriteln":null, "blackWriteln":null,
"alaskaNativeWriteln":null, "americanindianWriteln":null, "pacificlslanderWriteln":null, "easternEuropeanWriteln":null,
"middleEasternWriteln":null, "northAfricanWriteln":null, "usEntryType":null, "multipleBirth":false, "languageSurveyDate":null,
"certificateOfIndianBlood":false, "birthGender":null, "languagelnterpreter":false, "languageAltinterpreter":false,
"languageAlt2Interpreter":false }, "new": { "firstName":"Gerald" }}

The above string value is very long and using regular SUBSTRING, RIGHT, LEFT, CHARINDEX
functions could be used to pull the specific data you may be looking for. Another easier way to do
this is to use JSON value functions. In the above string, the following example could be used to get
the value of the raceEthnicity: SELECT JSON_VALUE(@IC_EVENT_DATA, '$.old.raceEthnicity')

An example of creating flags for students that meet some criteria would be when Online
Registration (OLR) updates a custom tab with a Media Release opt out, or when a user manually
makes this change, that a flag gets created for that student. You would first need to make sure
that you are asking this question in OLR and that the data is mapped to the custom tab. You also
need to have a flag created. There are two procs listed below to accomplish this. The first is a
condition proc that will confirm that the value, with a code of “MRA”, on the custom tab called
“OLR Posted Data” is checked. Once this event is triggered, and the condition check passes, the
action proc to insert the flag for the student. The flag was named “Media Opt out” with a code of
“MRO"”. Two variables were declared for the insert. One is finding the programID of the flag needs
to be inserted. The other is to set the desired tooltip. This can be done to easily reuse this proc for
others flags and only the code, name, and tooltip parameters need to be changed.

CREATE PROCEDURE [cust].[condition_MediaFlag]
@IC_EVENT_ACTION_TYPE CHAR(1),
@IC_EVENT_TIMESTAMP DATETIME,
@IC_EVENT_TABLE VARCHAR(128),
@IC_EVENT_COLUMN VARCHAR(128),
@IC_EVENT_KEY_ID INT,
@IC_EVENT_PERSON_ID INT,
@IC_EVENT_CALENDAR_ID INT,
@IC_EVENT_SCHOOL_ID INT,
@IC_EVENT_DISTRICT_ID INT,
@IC_EVENT_DATA VARCHAR(MAX),
@IC_EVENT_USER_ID INT,
@IC_EVENT_TOOL_ID VARCHAR(50)

AS

DECLARE @attributelD As INT
SET @attributelD = (SELECT attributelD FROM CampusAttribute WHERE element = 'MRA' AND [object] = 'OLR Posted
Data')

SELECT DISTINCT e.personlD

FROM enrollment e

INNER JOIN calendar ¢ ON c.calendarID = e.calendarlD

INNER JOIN school s ON s.schoollD = c.schoollD

WHERE 1=1

AND JSON_VALUE(@IC_EVENT_DATA, '$.new.attributelD') = @attributelD
AND e.personID = @IC_EVENT_PERSON_ID

AND |SON VALUE(@IC EVENT DATA, '$.new.value') = '1"

Page 9

AND @IC_EVENT DISTRICT_ID IS NOT NULL

/*

INSERT INTO CampusEventProcedure ([procedure], displayname, hidden, procType, [schemal])
VALUES ('condition_MediaFlag','condition_MediaFlag', 0, 'condition’, 'cust')

&l

CREATE PROCEDURE [cust].[action_MediaFlag]

@IC_EVENT_ACTION_TYPE CHAR(1),
@IC_EVENT_TIMESTAMP DATETIME,
@IC_EVENT TABLE VARCHAR(128),
@IC_EVENT_COLUMN VARCHAR(128),
@IC_EVENT KEY_ID INT,
@IC_EVENT_PERSON_ID INT,
@IC_EVENT_CALENDAR _ID INT,
@IC_EVENT_SCHOOL_ID INT,
@IC_EVENT_DISTRICT_ID INT,
@IC_EVENT_DATA VARCHAR(MAX),
@IC_EVENT_USER_ID INT,
@IC_EVENT_TOOL_ID VARCHAR(50)

AS

DECLARE @programID As INT
SET @programID = (SELECT programID FROM program WHERE code = 'MRO' AND name = 'Media Opt out')

DECLARE @tooltip As VARCHAR(25)
SET @tooltip = 'Media Opt out'

INSERT INTO ProgramParticipation (programlD, personID, startdate, enddate,userwarning, districtID, modifiedDate, mo
difiedByID)
SELECT @programID,@IC_EVENT_PERSON_ID, CONVERT(CHAR(10),GETDATE(),101), null,""+@tooltip+"", s.districtID,
GETDATE(),@IC_EVENT_USER_ID
FROM enrollment e
INNER JOIN calendar c ON c.calendarID = e.calendarlD
INNER JOIN school s ON s.schoollD = c.schoollD
LEFT OUTER JOIN ProgramParticipation pp ON pp.personID = e.personID
AND pp.programlID = @programID
AND (pp.enddate IS NULL OR pp.enddate >=GETDATE())
WHERE 1=1
AND e.personID = @IC_EVENT_PERSON_ID
AND pp.personID IS NULL

/*

INSERT INTO CampusEventProcedure ([procedure], displayname, hidden, procType, [schemal])
VALUES (‘action_MediaFlag','action_MediaFlag', 0, 'action’, 'cust')

*/

NOTE: The issue below has been resolved in a recent update, but is still useful if you are using
JSON values in your select statement for the body of the email, adding a string value if the
desired value is null.

One thing to be aware of is that any field that you insert into the email body must have a returned
value. If a value is null the email will fail to send. So, for any value that you place in your email

Page 10

body that may potentially be null, wrap this value in a COALESCE or ISNULL function. i.e.
COALESCE(e.enddate, ‘No End date’) AS enddate OR ISNULL(e.enddate, ‘No end date’) AS enddate.

For example, an EA triggers during an insert, update, and delete. The query for the email parses
the old end date and the new end date to display in the email, but the update was just the addition
of an end date, not a change to the end date.

SELECT i.firsthame + ' ' + i.lastname As studentFullName, i.firstname AS studentFirstName, p.studentnumber,
e.grade,CONVERT(CHAR(10),e.startdate,101) AS startdate, c.[name] AS calendarname, s.name AS schoolname, sy.lab
el As schoolYear,

CONVERT(CHAR(10),)JSON_VALUE(@IC_EVENT DATA, '$.old.endDate'),101) As oldEndDate,
CONVERT(CHAR(10),JSON_VALUE(@IC_EVENT_DATA, '$.new.endDate'),101) As NewEndDate,
--CONVERT(CHAR(10),JSON_VALUE(@IC_EVENT DATA, '$.old.name'),101) As oldRelationship,
--CONVERT(CHAR(10),JSON_VALUE(@IC_EVENT_DATA, '$.new.name'),101) As NewRelationship,

id.firstname + ' ' + id.lastname As modifiedBy, c.name AS CalendarName

FROM person p

INNER JOIN [identity] i ON i.identitylD = p.currentldentitylD

INNER JOIN enrollment e ON e.personlID = p.personID

INNER JOIN calendar c ON c.calendarID = e.calendarlD

INNER JOIN school s ON s.schoollD = c.schoollD

INNER JOIN schoolyear sy ON sy.endyear = c.endyear AND sy.active = 1

LEFT OUTER JOIN useraccount ua ON ua.userlD = @IC_EVENT_USER_ID
LEFT OUTER JOIN individual id ON id.personlID = ua.personlD

WHERE 1=1

AND p.personIiD = @IC_EVENT_PERSON_ID

The email will fail because there is no value for the end date in the JSON string. Adding a
COALESCE to the end date field will still produce results.

COALESCE(CONVERT(CHAR(10),)]SON_VALUE(@IC_EVENT_DATA, '$.old.endDate'),101),'No previous End date') As oldEn
dDate,

COALESCE(CONVERT(CHAR(10),)JSON_VALUE(@IC_EVENT_DATA, '$.old.endDate'),101),'No previous End date') As oldEn
dDate,

Page 11

Sent Message Log

ImeDwvee | weox [dEmal | Voie

Report Detai
@ a1) Summary) Fated Deivery

Another common scenario is how to send an email to a specific person at a school when
something happens, such as sending an email to the Attendance Clerk at one school versus all
schools. A best practice is to select “Limit to users with calendar Rights” on the email user group
settings. The issue is that many districts give certain users rights to all calendars, so this option
does not work for them. One way to dynamically do this is by creating a stored proc for recipients
to look at employment assignment versus calendar rights within user groups.

Below is an example that uses a stored proc to identify specific people at the school where the
event occurred. This query is linked to the employment assignment table and looks for a specific
employment title “Attendance Clerk”. This could easily be changed to any title or another field on
employment assignment like department, assignment code, supervisor, etc.

Page 12

CREATE PROCEDURE [cust].[userquery_schoolAssignment]
@IC_EVENT_ACTION_TYPE CHAR(1),
@IC_EVENT_TIMESTAMP DATETIME,
@IC_EVENT_TABLE VARCHAR(128),
@IC_EVENT_COLUMN VARCHAR(128),
@IC_EVENT KEY_ID INT,
@IC_EVENT_PERSON_ID INT,
@IC_EVENT_CALENDAR_ID INT,
@IC_EVENT_SCHOOL_ID INT,
@IC_EVENT_DISTRICT_ID INT,
@IC_EVENT_DATA VARCHAR(MAX),
@IC_EVENT _USER_ID INT,
@IC_EVENT_TOOL_ID VARCHAR(50)

AS

SELECT DISTINCT ua.userID

FROM person p

INNER JOIN [identity] i ON i.identitylD = p.currentldentitylD
INNER JOIN enrollment e ON e.personID = p.personID
INNER JOIN calendar c ON c.calendarID = e.calendarlD
INNER JOIN school s ON s.schoollD = c.schoollD

INNER JOIN EmploymentAssignment ea ON ea.schoollD = c.schoollD
AND (ea.startdate <= GETDATE() AND (ea.enddate IS NULL OR ea.enddate >= GETDATE()))
INNER JOIN person p2 ON p2.personID = ea.personID
INNER JOIN [identity] i2 ON i2.identitylD = p2.currentldentitylD
INNER JOIN useraccount ua ON ua.personlD = p2.personlD
WHERE 1=1
AND p.personID = @IC_EVENT_PERSON_ID
AND e.calendarlD = @IC_EVENT_CALENDAR_ID
AND e.enrollmentID = @IC_EVENT _KEY_ID
AND ea.title = 'Attendance Clerk'

/*
INSERT INTO CampusEventProcedure ([procedure], displayname, hidden, procType, [schemal)
VALUES ('userquery_schoolAssignment','userquery_schoolAssignment', 0, 'userquery', 'cust')

*/

GO

The next example is using a custom attribute drop list on the employment assignment. The
EANotifications drop-down list attribute can be used to identify types of notifications.

Page 13

Credentials Overrides Fees 10 Histary Person Documents Schedule Payments Impact Ald Military Connections SIF Person Data Contact Log

Drermnagraphi Idenfiti H I Relationships Enroliments District Employment District Assignments F3 Deposit School Choice
E Delete New
Teacher Special Ed Frogram Behavior Health Behavior Response Response to
Admin Approver Intervention
O o [m]
O] o
Advisor Supervisor Counselor Foodservice Exclude Behavior Self Service Approver FRAM Processor
Referral
O o a (]] O
(]
Activity Activity
Staff Preapproval
O]
Supervisors

Extarnal LMS Exclude

EANotification
| NG: Nty Group *

CREATE PROCEDURE [cust].[userquery_stuNumPopulated]

@IC_EVENT_ACTION_TYPE CHAR(1),
@IC_EVENT_TIMESTAMP DATETIME,
@IC_EVENT TABLE VARCHAR(128),
@IC_EVENT_COLUMN VARCHAR(128),
@IC_EVENT_KEY_ID INT,
@IC_EVENT_PERSON_ID INT,
@IC_EVENT_CALENDAR_ID INT,
@IC_EVENT_SCHOOL_ID INT,
@IC_EVENT _DISTRICT_ID INT,
@IC_EVENT_DATA VARCHAR(MAX),
@IC_EVENT_USER_ID INT,
@IC_EVENT TOOL_ID VARCHAR(50)

AS

SELECT DISTINCT ua.userlD--, s.schoolID, i2.lastname, i2.firstname
FROM person p
INNER JOIN [identity] i ON i.identitylD = p.currentldentitylD
INNER JOIN enrollment e ON e.personID = p.personID
INNER JOIN calendar c ON c.calendarID = e.calendarlD
INNER JOIN school s ON s.schoollD = c.schoollD
INNER JOIN schoolyear sy ON sy.endyear = c.endyear AND sy.active = 1
INNER JOIN EmploymentAssignment ea ON ea.schoollD = c.schoollD
AND (ea.startdate <= GETDATE() AND (ea.enddate IS NULL OR ea.enddate >= GETDATE()))
INNER JOIN campusattribute ca ON ca.[object] = 'EmploymentAssignment' AND ca.element = 'EANotify"
INNER JOIN CustomEmploymentAssignment cea ON cea.attributelD = ca.attributelD AND cea.assignmentID = ea.assig
nmentID AND cea.[value] = 'NG'
INNER JOIN person p2 ON p2.personlD = ea.personlD
INNER JOIN [identity] i2 ON i2.identitylD = p2.currentldentitylD
INNER JOIN useraccount ua ON ua.personlD = p2.personlD
WHERE 1=1
AND p.personID = @IC_EVENT_PERSON_ID
AND (e.startdate < = GETDATE() AND (e.enddate IS NULL OR e.enddate >=GETDATE()))

/*
INSERT INTO CampusEventProcedure ([procedure], displayname, hidden, procType, [schemal])

VALUES (‘'userquery_stuNumPopulatedt','userquery_stuNumPopulated', 0, 'userquery’, 'cust')

*/

Page 14

Page 15

