
Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 1

Events and Actions
Last Modified on 10/21/2024 8:19 am CDT

 Events & Actions is part of the Campus Workflow Suite.

Tool Rights for Events & Actions | Navigation of Events & Actions | Create a New Event | Create a New Action for
the Event | Copy an Event or Action | State Edition Events & Actions | Debug Logging | Events and Actions
Scenarios | Stored Procedures

Tool Search: Events & Actions Configuration

Events & Actions is a means to cue/prompt staff when a change occurs that needs staff attention, like a schedule
change, a new student enrolls in the district, or a student leaves the district. These changes are determined and
configured by the district, improving communications among all involved parties.

Users can create an event that will monitor database tables, columns, and column values. Stored procedures can
be used to enhance the functionality of this tool, which requires database access.

Watch this Events & Actions video for more information.

This tool requires knowledge of SQL, database structures, and the Campus database. If you or your district do
not have this sort of knowledge, please contact Infinite Campus to inquire about training, stored procedure
creation, or process consulting.

Events and Actions Workflow
Below is the standard workflow that Events and Actions follows.

1. An Event is created, along with an associated actions of the event.
2. When the Event is made active, a trigger is applied to the database corresponding to the table and column

specified in the Event.
3. A change occurs in Infinite Campus that is being monitored by an Event and its trigger is captured.
4. A Quartz job runs on the database every minute and processes the captured events.

https://www.infinitecampus.com/products/campus-workflow
http://kb.infinitecampus.com/#tool-rights-for-events--actions
http://kb.infinitecampus.com/#navigation-of-events--actions
http://kb.infinitecampus.com/#create-a-new-event
http://kb.infinitecampus.com/#create-a-new-action-for-the-event
http://kb.infinitecampus.com/#copy-an-event-or-action
http://kb.infinitecampus.com/#state-edition-events--actions
http://kb.infinitecampus.com/#debug-logging
http://kb.infinitecampus.com/#events-and-actions-scenarios
http://kb.infinitecampus.com/#stored-procedures
http://kb.infinitecampus.com/help/events--actions-configuration-video

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 2

5. The Quartz job processes all Actions for the captured Event in the order defined by the Action sequence.

To avoid performance disruptions, Campus recommends saving the first active event for a table
during off-peak hours when database activity is low.
Example: No events have been created on the Enrollment table. Consider creating the first event for the table
during a time when user activity is low.

As Actions complete, Campus logs a record in the database if the Debug Logging option is marked on the Event
editor. If the action is an Email, Campus records an entry in the Sent Message Log and the Recipient Log.

Tool Rights for Events & Actions
This is a powerful tool requiring technical knowledge of the Campus database. Campus Administrators should
assign tool rights to a very limited set of users and only when completely necessary.

Full access to Events & Actions requires RWAD rights to the following:

System Administration > Events & Actions
System Administration > Events & Actions > Events & Actions Configurations

Assign R rights for users to view existing Events & Actions, but new Events & Actions cannot be created and
changes cannot be made.

Assign RW rights for users to view existing Events & Actions, and modify existing Events & Actions. New Events &
Actions cannot be created.

Assign RWA rights for users to view existing Events & Actions, modify existing Events & Actions, and add new
Events & Actions, and copy the action associated with the event (but not the event itself).

Assign RWAD rights for users to view existing Events & Actions, modify existing Events & Actions, add new Events
& Actions, copy Events & Actions, and delete Events & Actions.

http://kb.infinitecampus.com/#EventsandActions-DebugLogging
https://kb.infinitecampus.com/help/sent-message-log
https://kb.infinitecampus.com/help/recipient-log

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 3

When given rights to Events & Actions, users also have the ability to see the list of User Groups available in their
district even if they do not have rights to user groups. However, they cannot see the individual members of the
user groups.

Navigation of Events & Actions
Events & Actions is divided into two editors:

First, an Event is created. An Event sets the criteria for monitoring an occurrence in the database - a record
has been added to a table, a status on an existing record has changed, a record has been deleted.
Second, an Action (or Actions) is associated with the Event, which is what happens in response to the event.
For example, a student ends their enrollment or the building secretary enters an End Date on the enrollment
record. That event - the ending of an enrollment - requires certain actions to occur, like the end dating of the
student's locker, alerting/informing the counselor to print a transcript, etc.

Actions can be either Email, which sends information to a user group or a custom list using Campus Messenger
functionality, or a Stored Procedure that is created by the district. See the Stored Procedures section for more
information on this process.

Events Editor
The Events Editor lists all configured events in various states of completion (active, pending, inactive), and
includes the selected database table and column used in the event, and the action taken in response to the Event
(email, stored procedure, etc.).

The Events editor is a summary screen to aid users in seeing what has been configured already.

These columns can be resorted as desired, by clicking on the header itself (Status, Name, etc.), or by choosing a
value from the dropdown for that column.

http://kb.infinitecampus.com/#EventsandActions-StoredProcedures

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 4

Element Description

Status Indicates where that event is in the process. Events can be sorted by any of these. Events sort in
Pending, Active, Inactive order.

Pending - Event has been created, but the trigger of the event has not been applied or was
removed. Essentially, Pending events are waiting for the trigger to be applied to the table.A
pending event is similar to an inactive event. While the status is pending, this event and its
actions do not happen.
Active - Event is created and the Active checkbox on the Event Detail editor is marked. Any
occurrences in the database that meet this Event's criteria will process the associated
Action(s).
Inactive - Event is created, but the Active checkbox on the Event Detail editor is not
marked. Any triggers that may exist on the associated table will not capture events that meet
the criteria of an Inactive Event.

Name Provides a short summary of the Event, so it can be easily located when modifications need to be
made. If the action is an email to building staff that a student's Homeless status changed, the name
of the Event might be Homeless Status Changed.
On the Detail editor, a Description field is provided so users can add more information to what
occurs with the event.

Table Lists the database table that is defined in the event.

Column Lists the database column of the selected table that is monitored in the event.

Action Indicates a summary of the action(s) that occurs when the event is triggered, such as an email is
sent to a selected user group.

Select an item to view the Events Detail or click New to create a new event.

Events Detail Editor
The Events Detail editor displays all of the fields necessary to create a new event and establish an action for that
event. Provided below are descriptions of the fields on the Events Detail editor.

Field Description

Name Provides a short summary of the Event (up to 128 characters. This name displays on the Events
Editor (defined above).

Active Indicates whether the event is active (triggers associated with the event cause the action to
occur). If this field is not marked, the event is inactive (triggers associated with the event do not
cause the action).
The default setting for this field to not marked (inactive). This checkbox needs to be manually
marked.

Description Provides a larger text field (up to 1000 characters) to detail what the event is for and the
subsequent actions that are done.

Table Selection indicates the table the Event is monitoring for change and where the database trigger
is placed. Any table in the database can be chosen.

Active
School
Year Only

Displays only when the selected table includes a CalendarID column. When marked, only events
that occur in the active School Year initiate Action(s).

Column Selection indicates the specific column within a table that defines the exact column from the
database that is being monitored by the Event.
A column must be selected to enable the Before Value/After Value fields.

http://kb.infinitecampus.com/#EventsandActions-EventsDetailEditor
http://kb.infinitecampus.com/#EventsandActions-CreateaNewEvent

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 5

Conditional
Stored
Procedure

Adds an additional condition to the event. When the per minute Quartz Job runs and detects an
Event has been triggered, it also checks if a Conditional Stored Procedure has been entered. If
the criteria in the Conditional Stored Procedure has been met (is true), then the Actions process
for the Event. If the Conditional Stored Procedure is not met (False), then no Actions are
processed.

This could be used to associate a second table to an event.

Operation
Performed

When the marked option occurs for the selected table, the action (email sent, for example) is
processed. If user wants to know when a new enrollment is created for a student, Insert would
be selected. If user wants to know when an enrollment field has changed, Update would be
selected.

Enable
Debug
Logging

When marked, event information is recorded to an internal table for troubleshooting purposes.
See the Debug Logging table for more information.

Before
Value

When a Column is selected, the event conditions are only met when the initial value in the
Column is equal to the Before Value. For example, for an event that reports an update to an
enrollment field, the before value might be blank; the after value might be Y or 1.

After Value When a Column is selected, the event conditions are only met when the saved value is equal to
the After Value. For example, for an event that reports an update to an enrollment field, the
before value might be blank; the after value might be Y or 1.

Field Description

Event Actions Editor
Following the Events Detail Editor is an Event Actions editor, which lists the actions associated with the selected
Event. This displays the Status of the action, the Sequence (because an event can have more than one action) and
the name of the action. For example, a change to an enrollment record might have an action of sending an email
to building secretaries, and another action to send an email to change the combination on a locker.

When an Action is selected, an Action Detail editor and Action Type editor display.

Action Detail
Field Description

Name Provides a short summary of the Action (up to 128 characters).

http://kb.infinitecampus.com/#EventsandActions-DebugLogging

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 6

Active Indicates whether the action is active. When conditions of an event are met, only Actions marked
Active will be processed.
When this field is not marked, the action is inactive and does not process when the Event
conditions are marked.
The default setting for this field to not marked (inactive). This checkbox needs to be manually
marked.

Type Indicates whether the action is in the form of an email or a stored procedure. See the following
Action Type table for available options.
Emails are sent to Campus Messenger for processing. The address used to send emails is entered
in the Default Email Sender Address in Email Messenger Settings.

Sequence Determines the order in which the actions occur. An event could have more than one action. If it
does, then sequence numbers the actions in numeric order. If this order needs to be changed after
more than one are saved, this value can be modified, or the user can drag and drop the actions
into the proper order.

Field Description

Action Type
This editor varies based on the selected Type in the Detail editor.

Field Description

Email Type Fields

Recipient Determines which staff receive the email. A User Group can be chosen, which are created
in User Security, or a Recipient Stored Procedure can be selected. See the Stored
Procedures section for more information.

Only one User Group can be selected per action. If multiple user groups should receive an
email, use the Copy option to make a copy of the Action and select another User Group. This
creates multiple actions for the event that are sequenced and are executed in sequence
order.

If a user has rights to this tool, they are able to see the list of User Groups, even if they don't
have access to user groups in System Administration.

Message Type Further defines the email recipients. Persons in Campus are assigned Messenger Preferences
Contact Reasons. This selection dictates which email address is used for recipients of the
email action.

Limit Users
with Calendar
Rights

This checkbox only appears if the Event table contains a calendarID column. When checked
and a record is manipulated in a table with a calendarID, Email actions only send to
recipients who have rights to the calendar of the changed record.

Subject Emails are sent with the entered text.

Field Stored
Procedure

Users select the stored procedure that was created to pull specific columns from the Campus
database to be displayed in the email body.

Body Allows creation of an email message using a WYSIWYG editor. Events & Actions uses a new
WYSIWYG editor and provides some additional formatting options not available in older
WYSIWYG editors. Use the Insert Field option to select the field names to populate specific
information for the email. The Insert Field button is only enabled when a Field Stored
Procedure has been selected. If the studentName field is selected, the email includes the
name of student that requires action.

https://kb.infinitecampus.com/help/email-settings
http://kb.infinitecampus.com/#EventsandActions-StoredProcedures
https://kb.infinitecampus.com/help/demographics#personal-contact-information

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 7

Stored Procedure Type Fields
Stored
Procedure

Indicates which Stored Procedure that is executed when this event action is processed.

Field Description

Create a New Event
1. Click the New button at the bottom of the Events editor. An Events Details Editor opens.
2. Enter the Name and Description for the Event.
3. Select the Active checkbox if the event should be available to run immediately. Otherwise, leave this

checkbox not marked.
4. Select the Table and Column for the Event.
5. Indicate the desired Operation Performed.
6. Enter the Before Value and After Value, if applicable.
7. Mark the Active School Year Only checkbox if applicable.
8. Select a Conditional Stored Procedure, if desired.
9. Mark the Enable Debug Logging to track database messages logged as this event executes.

10. Click the Save icon when finished. This saves the event, closes the Event Detail editor and displays the
Events editor.

11. Or, click the arrow next to the Save icon to select Save & Stay. This saves the event and leaves the Event
Detail editor visible so Event Actions can be added.

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 8

Create a New Action for the Event
An event must be saved before an action can be created for that event.

1. From the Events Detail editor, click the AddAction button. An Action Detail editor and Action Type editor
displays.

2. In the Action Detail editor:
Enter the Name of the Action.
Select the Active checkbox if the action should be available to run immediately. Otherwise, leave this
checkbox not marked.
Select the Type of action - Email or Stored Procedure.
Assign a Sequence to the action, or verify the correct Sequence is entered.

3. For an Email Action Type, in the Action Type editor:
Select the desired Recipients to receive a message by choosing a User Group or choosing
a Recipient Stored Procedure .
Select the desired Message Type.
Select the Limit to Users with Calendar Rights checkbox if the recipients should be limited to users
whose calendar rights match the calendarID of the database record that was changed.
Enter the Subject of the Email.
Select the Field Stored Procedure that provides the fields available to the Insert Field button in the
WYSIWYG editor.
Enter the Body of the email in the WYSIWYG editor.
Use the Insert Fieldbutton to customize the email with specific fields provided by the Field Stored
Procedure.

4. For a Stored Procedure Action Type, in the New Action Type editor:
Select the desired Stored Procedure from the dropdown. See the Stored Procedures section for more
information.

5. Click the Save or Save & Stay button. Save returns the user to the Event Detail editor; Save & Stay keeps
the user on the Action editors, where an action can be copied or modified.

http://kb.infinitecampus.com/#EventsandActions-StoredProcedures

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 9

Copy an Event or Action
To copy an event, select an Event from the main Events screen and click the Copy button. The Event Detail editor
displays. Follow the procedures above for creating an event. The fields are already populated from the event from
which the copy was made. Changes can be made to any field.

To copy an action, select the Action from the event and click the Copy button. The Action Detail editor displays.
Follow the procedures above for creating an action. The fields are already populated from the event from which
the copy was made. Changes can be made to any field.

Upon creation, events and actions are inactive. Users must mark the Active checkbox in order to active them.

Since only one table and one column can be associated with any event or action, and one user group can be
associated for any action, copying events and actions allows different tables to be selected for the same event.

State Edition Events & Actions
States that have purchased the Campus Workflow Suite for the entire state will have access to the Push To
Districts tool. When this tool is used, it moves the Events and Actions down to all districts within the state or
updates the existing Events and Actions if changes have been made. The Owner column within the Events table

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 10

lists the State as the owner of that event.

When the state creates a new Event and Action and pushes it down to districts, it is not active by default. Districts
must enable the new Events and Actions. After using Push To Districts, there will be a delay before districts see the
new Events and Actions.

Events and Actions that have been saved will appear as 'Unpublished' in the Publish Status and the Sync Status
before using Push to Districts. The status will change to 'Published' once Push To Districts has been used. When
changes are made to an Event or Action, it will again appear as 'Unpublished.' The status will become 'Published'
once Push To Districts is used again.

This is only available for state editions that have purchased the Campus Workflow Suite for the entire state.

If a district makes a copy of a state Event and the state makes changes to the original event, the copy will not
be updated.

Debug Logging
When the Enable Debug Logging checkbox is marked on the Event editor, records are stored in the database that
provide details on why an error occurred.

The following tables provide a list of the possible messages that might occur and some troubleshooting tips to
correct it.

These messages are ONLY visible with database access.

Event Errors
 Click here to expand...

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 11

Event
Message

Sample Event Statement Explanation Try This...

Unsuccessful Messages

Event wasn't
processed
because it
was not in
the active
year

CampusEventLog.addLog(eventLog, "Event skipped
due to non active year. ");
Processing event triggered on Sample table, ID 211728.
Event skipped due to non active year.

The event wasn't
processed because
the action that
triggered it did not
occur in the active
year.

First, verify
the event
should have
occurred in
the active
year.

Data
exception
trying to
execute SQL
from from a
stored
procedure

CampusEventLog.addLog(log, "Exception during
condition procedure: " + e.getMessage());
Processing event triggered on Sample table, ID 8294.
Exception during condition procedure: Conversion failed
when converting the varchar value 'test' to data type int.

The event wasn't
processed because
there was bad data
in the stored
procedure.

Review the
stored
procedure
for
accuracy.

Stored
Procedure
executed
successfully
and failed

CampusEventLog.addLog(log, "Condition check failed.
");

Processing event triggered on Sample table, ID 8298.
Condition check failed.

The event wasn't
processed because
a condition in the
stored procedure
failed.

Review the
stored
procedure
for
accuracy.

Successful Messages

A Processing
Event was
triggered

CampusEventLog.addLog(eventLog, "Processing event
triggered on " + eventRecord.table + " table, ID " +
eventRecord.keyID + ". ");
Processing event triggered on Sample table, ID 38917.
Processing action ID 5 email type. Fetching emails for
groupID 152. Found 3 email recipients. Email is given to
Messenger for sending.

Stored
Procedure
executed
successfully
and passed

CampusEventLog.addLog(log, "Condition check
passed. ");
Processing event triggered on Sample table, ID 8297.
Condition check passed. Processing action ID 127 email
type. Fetching emails for groupID 283. Filtering email by
calendar rights. Found 0 potential email recipients. Email
given to messenger for sending.

Action Errors
 Click here to expand...

Action Message Sample Action Statement Explanation Try This...

Unsuccessful Messages

Error occurred
trying to execute
the Action and
specifically the
wrong action type

CampusEventLog.addLog(log, "CampusEventAction
" + actionID + " references non-existent event
handler " + eventHandler + ". ");
Sample message:
Processing event triggered on
HealthScreeningVision table, ID 8294.
CampusEventAction 122 references non-existent
event handler email1.

The action wasn't
processed
because of an
incorrect action
type.

Review the
action
associated with
the event and
modify the
action type.

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 12

Error executing
the stored
procedure in the
Action condition

CampusEventLog.addLog(log, "Exception during
condition procedure: " + e.getMessage());
Sample Message:
Processing event triggered on Sample table, ID
8294. Processing action ID 121 sql type. Exception
during execution of action procedure wf_a_bad: A
result set was generated for update.SQL procedure
wf_a_bad executed.

The action wasn't
processed
because a
condition in the
stored procedure
failed.

Review the
stored
procedure for
accuracy.

A result set was
generated for...

This is a SQL controlled statement not IC statement
Processing event triggered on Sample table, ID
8294. Processing action ID 121 sql type. Exception
during execution of action procedure wf_a_bad: A
result set was generated for update.SQL procedure
wf_a_bad executed.

The action wasn't
processed
because a
condition in the
stored procedure
failed.

Review the
stored
procedure for
accuracy.

Successful Messages

Start processing
action(s)

CampusEventLog.addLog(log, "Processing action
ID " + this.actionID + " " + eventHandler + " type.
");
Sample message:
Processing event triggered on Sample table, ID
38917. Processing action ID 5 email type. Fetching
emails for groupID 152. Found 3 email recipients.
Email is given to Messenger for sending.

Action Message Sample Action Statement Explanation Try This...

Email Actions
 Click here to expand...

Action
Message

Sample Action Statement Explanation Try This...

Unsuccessful Messages

Field
Stored
Procedure

CampusEventLog.addLog(log, "Exception during execution
of template procedure " + action.templateProc + ": " +
e.getMessage());
Sample Message:
Processing event triggered on Sample table, ID 8300.
Processing action ID 130 email type. Exception during
execution of template procedure wf_t_bad: Conversion failed
when converting the varchar value 'test' to data type int.
Fetching emails for groupID 283. Filtering email by calendar
rights. Found 0 potential email recipients. Email given to
messenger for sending.

The process failed
because of bad
data, i.e., there
were no users in
the selected user
group or a value
couldn't be read.

There
could be
multiple
reasons for
a
conversion
failure with
data.
Review the
selected
user group
for
individuals
and email
addresses.

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 13

Recipient
Stored
Procedure

CampusEventLog.addLog(log, "Bad recipient procedure
name " + action.recipientProc + ": " + e.getMessage());
Sample Message:
Processing event triggered on Sample table, ID 8299.
Processing action ID 129 email type. Bad recipient
procedure name %--'_$`&[]: Table name rejected due to
possibility of SQL injection: %--'_$`&[]Error sending email,
skipping.

The process failed
because of bad
characters
(brackets, dollar
signs, other
special characters)
in the stored
procedure.

Modify the
procedure
to not
include the
bad
characters.

No email
recipients
configured

CampusEventLog.addLog(log, "No email recipients
configured! ");
Sample Message:
Processing event triggered on Sample table, ID 8296.
Processing action ID 125 email type. No email recipients
configured! Email given to messenger for sending.

There were no
email addresses
found; however,
the email was still
sent to messenger
for processing and
completion.

Verify staff
email
addresses
are
entered for
the desired
group of
users.

Error
sending
email for
(email)
skipping

CampusEventLog.addLog(log, "Error sending email,
skipping. ");
Sample Message:
Processing event triggered on Sample table, ID 8299.
Processing action ID 129 email type. Bad recipient
procedure name %--'_$`&[]: Table name rejected due to
possibility of SQL injection: %--'_$`&[]Error sending email,
skipping.

The process failed
because of bad
characters
(brackets, dollar
signs, other
special characters)
in the stored
procedure.

Modify the
procedure
to not
include the
bad
characters.

Exception
during
execution
of action
procedure

CampusEventLog.addLog(log, "Exception during execution
of action procedure " + action.actionProc + ": " +
e.getMessage());
Sample Message:
Processing event triggered on Sample table, ID 42719.
Processing action ID 97 sql type. Exception during execution of
action procedure wf_a_createHIbehaviorForm:Conversion
failed when converting date and/or time from character
string.SQL procedure wf_a_createHIbehaviorForm executed.

This is a SQL error
that occurs when
there is an issue
with the stored
procedure.

Review the
stored
procedure
for
accuracy.

Successful Messages

Recipient
User
Group

CampusEventLog.addLog(log, "Filtering email by calendar
rights. ");
Sample message:
Processing event triggered on Sample table, ID 38925.
Processing action ID 25 email type. Fetching emails for
groupID 285. Filtering email by calendar rights. Found 2
potential email recipients. Email given to messenger for
sending.

Found X
potential
email
recipients

CampusEventLog.addLog(log, "Found " +
recipientList.size() + " potential email recipients. ");
Sample Message:
Processing event triggered on Sample table, ID 213760.
Processing action ID 91 email type. Fetching emails for
groupID 283. Found 2 potential email recipients. Email given
to messenger for sending.

Action
Message

Sample Action Statement Explanation Try This...

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 14

Email
given to
messenger
for
sending

CampusEventLog.addLog(log, "Email given to messenger
for sending. ");
Sample message:
Processing event triggered on Sample table, ID 38925.
Processing action ID 25 email type. Fetching emails for
groupID 285. Filtering email by calendar rights. Found 2
potential email recipients. Email given to messenger for
sending.

Action
Message

Sample Action Statement Explanation Try This...

SQL Actions
 Click here to expand...

Action
Message

Sample Action Statement Explanation Try
This...

Unsuccessful Messages

Exception
during
execution
of action
procedure

CampusEventLog.addLog(log, "Exception during execution of
action procedure " + action.actionProc + ": " + e.getMessage());
Sample Message:
Processing event triggered on Sample table, ID 42719. Processing
action ID 97 sql type. Exception during execution of action
procedure wf_a_createHIbehaviorForm:Conversion failed when
converting date and/or time from character string.SQL procedure
wf_a_createHIbehaviorForm executed.

This is a SQL
error that occurs
when there is an
issue with the
stored
procedure.

Review
the stored
procedure
for
accuracy.

Successful Messages

SQL
procedure
(Name)
executed

CampusEventLog.addLog(log, "SQL procedure " +
action.actionProc + " executed. ");
Sample Message:
Processing event triggered on Sample table, ID 38754. Processing
action ID 98 sql type. SQL procedure wf_a_createHIbehaviorForm
executed.

Event with Multiple Actions
 Click here to expand...

An event with multiple actions continues to append the log text as the actions are executed. Successful sample
messages for these types of events are below:

Message Sample One:

Processing event triggered on Sample table, ID 8292. Processing action ID 24 email type. Fetching emails for
groupID 283. Filtering email by calendar rights. Found 0 email recipients. Email sent. Processing action ID 26 email
type. Fetching emails for groupID 283. Filtering email by calendar rights. Found 0 email recipients. Email is given
to Messenger for sending.

Message Sample Two:

Processing event triggered on Sample table, ID 8294. Processing action ID 92 email type. Fetching emails for
groupID 283. Filtering email by calendar rights. Found 0 email recipients. Email sent. Processing action ID 93 email
type. Fetching emails for groupID 283. Filtering email by calendar rights. Found 0 email recipients. Email sent.
Processing action ID 94 email type. Fetching emails for groupID 283. Filtering email by calendar rights. Found 0
email recipients. Email is given to Messenger for sending.

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 15

Events and Actions Scenarios
This section provides a few examples of events and actions that can be created.

Scenario 1: Enrollment Change
This example is an Event that sends an email to a specific user group when a new enrollment has been added for
a student in the current school year.

Step 1. Verify the staff to whom the message is being sent have email addresses entered
Navigate to Census > People > Demographics and search for the individuals who are to receive this
email.
In the Messenger Preferences Contact Reasons section, verify the email has been entered and the
appropriate Contact Reasons are selected. The Action editor contains a Message Type field; individuals who
have a matching Messenger Preferences Contact Reasons checkbox marked receive a message.

For this example, the Counselor has his school email address entered and is marked for Staff and General Message
Types.

Staff Email and Contact Reasons

Step 2. Verify the staff person has an active District Assignment record

This step won't affect the delivery of the message, but it's a good idea to review assignment records for accuracy.

Navigate to Census > People > District Assignments and view the individual's list of assignment and
start dates.

Step 3. Verify the correct individuals are included in the User Group that is used in the
Event Action

Navigate to System Administration > User Security > User Group

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 16

Enter the name of the User Group in the Search field and select the desired group.
Select Membership Summary.

Three counselors are included in the group, and all three of them should receive the email about a new enrollment
being added.

Step 4. Create the Event
Navigate to System Administration > Events & Actions > Events & Actions Configuration .
Click the New button.
On the Event Detail editor, enter the Name of the Event. Since this example is to alert counselors of a new
enrollment, the Event Name could be New Enrollments.
Enter a more detailed Description of the event, perhaps including who receives it.
Mark the Active checkbox.
Since this is an event related to enrollments, select Enrollment from the Table dropdown.
Mark the Active School Year Only checkbox. This only sends an email when the new enrollment is for the
active year.
The Column field can be left to the default selection of (Any Column), or insert a specific column. This
event isn't looking for a change to an existing column so this isn't necessary.
For Operation Performed, mark Insert. This event is looking for a new record in the table.
Mark the Enable Debug Logging for troubleshooting (if access to the database is available).
The Before Value and After Value fields are not activated since there is no column selection.
Click the Save & Stay button.

Step 5. Add an Action to the Event
Click the Add Action button.
On the Action Detail editor, enter the Name of the Action. Since this example is to alert counselors of a new
enrollment, the Name could be Email to Counselors.

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 17

Mark the Active checkbox.
Select the Type of Email.
This event has one action, so the Sequence can be left at 1.

Step 6. Create the Email
On the Action Type editor, select the User Group to receive the email.
Select the desired Message Type. The counselors in this group have the Staff checkbox marked for their staff
emails (marked in Step 1).
Mark the Limit to users with Calendar Rightsso only the counselors with calendar rights in the calendar in
which the enrollment was created receive an email.
Enter a Subject for the email.
From the Field Stored Procedure dropdown, select the Enrollment Info button. This is a stored procedure
that has been added to the database and includes three fields that are used in the body of the email. An
email can be sent without these fields, but it won't be customized with the student's name, grade level and
calendar name.
Type the email message in Body field, using the available formatting options of the WYSIWYG editor.
To customize the message, click the Insert Field button and select the field names.
Click the Save button.

Step 7. New Enrollment Added

The Central Office has added a new enrollment for a student who has transferred to the district from out of state. A
database trigger is watching the Enrollment table and captures this insert. The Events & Actions logic records this
change in a file and waits for a quartz job to begin processing (runs every minute). The quartz job begins
processing the actions for this captured event and the Recipients receive their email.

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 18

Step 8. Review the Sent Message Log

In the Sent Message Log, the Central Office or the Administrator can verify that the email was sent and the event
was completed.

Scenario 2: End Date a Locker
This example is an Event that notifies individuals that a student has transferred out of the district. It uses a stored
procedure that has been created by the district to auto-end a student's locker when the enrollment ends.

Assumptions have been made for this example that User Groups are established already and staff emails have
been added to Messenger Preferences Contact Reasons and the selections are correct (see Steps 1-3 in the
previous example if necessary).

Step 1. Create the Event
Navigate to System Administration > Events & Actions > Events & Actions Configuration .
Click the New button.
On the Event Detail editor, enter the Name of the Event. Since this example is to alert counselors of a
student transferring out of the district, the Event Name could be Student Transfer Out of District .
Enter a more detailed Description of the event to include information about the automatic ending of a
student's locker.
Mark the Active checkbox.
Since this is an event related to enrollments, select Enrollment from the Table dropdown.
Mark the Active School Year Only checkbox. This means the enrollment must be ended in the active School

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 19

Year to initiate an Action.
For this event, the trigger is related to either an insert or a change for a specific column that is looking for an
enrollment end status of a particular type. The Column field needs to know which specific table column to
look for, so a selection of localEndStatusTypeID is selected.
For Operation Performed, mark Insert and Update. This event is looking for a new record in the table or an
update to an existing record in the table.
Mark the Enable Debug Logging for easier troubleshooting.
The Before Value field can be left blank, but the After Value field needs an entry that reflects the End
Status that is being monitored. In this example, the Transfer Out of District End Status has a column value of
48.
Click the Save & Stay button.

Step 2. Add the Action

This event has two other actions already created - one is an email to Counselors to print the student's transcript,
and one is an email to the administrator to print a letter. This new action is to auto-end date the student's locker
so it can reassigned to other students as needed.

Click the Add Action button.
On the Action Detail editor, enter the Name of the Action. Since this example is to end locker assignments,
the Name could be End Lockers.
Mark the Active checkbox.
Select the Type of Stored Procedure.
This event has three actions, so the Sequence is three. Actions are performed in the sequence order.
On the Action Type editor, select the appropriate Stored Procedure. This has already been tested on the
district's staging site, added to the database, and made available in the Action Detail editor. See the Stored
Procedures section for more information.
Click the Save button.

When the quartz job runs the actions associated with the Event and are processed in sequence order. The first two
actions deliver emails via the Messenger system. The third action runs the stored procedure which end dates the
student's locker.

http://kb.infinitecampus.com/#EventsandActions-StoredProcedures

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 20

Stored Procedures
Events & Actions allows customers to perform custom tasks when specified changes have occurred in the Campus
database. Common options or tasks are available directly in the configuration tool, but to achieve maximum
flexibility, some parts of the system can be configured by user-provided stored procedures.

Events & Actions do not require the use of stored procedures; different types of notifications can still be sent as an
email. But, the personalized details of that communication (staff name, student name, etc.) would not be included.
Without the stored procedure, it would be a generic message.

There are advantages to using Stored Procedures in events:

Stored procedures can be used in Events to fine tune the exact database change being monitored by the
event.
Stored procedures can be used in Actions with the type of Email to define the recipient list or to provide fields
from the database to the email body.
Stored procedures can be used in Actions with type of Stored Procedure to process a user defined change.

The following information provides guidance on stored procedures. As noted above, if you do not have access to
your database to add stored procedures or are unfamiliar with databases, contact Infinite Campus for options.

 Click here to expand...

Types of Stored Procedures
There are currently four places where stored procedures can be used. Each use has a different purpose and
design.

Type Description Example

Conditional These stored procedures are used to filter events
when it is defined by a complex condition not
described by a simple change of a database
column.

An action is desired when a behavior
event is reported for students who
participate in a particular program.

Recipient These stored procedures are used in email actions
to select recipients of the email for the particular
event.

An email is sent to Primary teacher of a
course section when a new student is
scheduled into that section.

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 21

Field These stored procedures provide data that is
included in the body of an email that is sent for a
particular event.

The email needs to contain the school
name to inform an administrator that the
event pertains only to a particular school.

Action These stored procedures are used by the stored
procedure action type to perform some custom
database changes when an event has occurred.

A transportation end date needs to be
entered when an enrollment has ended.

Type Description Example

Add a Stored Procedure to Events & Actions
Create the stored procedure
A database administrator needs to create the stored procedure in the database and given a name that identifies a
procedure and its use.

If the procedure is custom to the district, the procedure should be located in the cust schema. This avoids
potential future collisions of procedure names and database changes that are made by Infinite Campus.

Include the site or district abbreviation in the name to assist in identifying the procedure's owner.
Include briefly the subject of the procedure and its type.

Procedure names should begin with a letter and contain only letters, numbers and underscores as this allows
simpler SQL syntax for referencing. An example would be a procedure named
'PSD123_InsertedCriticalBehaviorRole_Field'. This indicates it is a procedure to retrieve email fields for critical
behavior roles in the district.

Input parameters

All stored procedures must take the following parameters and types:

@IC_EVENT_ACTION_TYPE CHAR(1) This parameter is I, U, or D.
I indicates the event was caused by an insert
U indicates the event was for an update
D indicates the event was for a delete

@IC_EVENT_TIMESTAMP DATETIME This parameter is a timestamp that indicates when the database
recorded the change.

@IC_EVENT_TABLE VARCHAR(128) This parameter contains the name of the table that was changed.

@IC_EVENT_COLUMN VARCHAR(128) This parameter contains the name of the column that was changed (if
configured).

@IC_EVENT_KEY_ID INT This parameter contains the key if the primary key on the changed
table is a single INT-datatype column.

@IC_EVENT_PERSON_ID INT This parameter contains the personID if the changed table contains a
column named personID.

@IC_EVENT_CALENDAR_ID INT This parameter contains the calendarID if the changed table contains a
column named calendarID.

@IC_EVENT_SCHOOL_ID INT This parameter contains the schoolID if the changed table contains a
column named schoolID.

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 22

@IC_EVENT_DISTRICT_ID INT This parameter contains the districtID if the changed table contains a
column named districtID.

@IC_EVENT_DATA VARCHAR(MAX) This parameter contains a string with a JSON object that contains
structured before and after information about the changed record.
The object has two fields - one field labeled old and one field labeled
new.

The old field is an object that includes fields that match the
changed table's fields. The values for those fields are those that
exist in the changed database record before an update or delete.
The new field is an object that includes either fields whose values
changed in an update, or those fields that exist in the changed
database record in the case of an insert.

Example:

{ "old" :
{ "keyID" :1, "field2" : "hello" , "field3" : false , "field4" : "2019-
01-01T23:00:00" , "field5" : null }

 "new" : { "field2" : "goodbye" , "field3" : true } }

@IC_EVENT_USER_ID INT This parameter contains the userID field from the UserAccount table of
the Campus user that changed the record if the change was initiated
within most parts of the Campus application.

@IC_EVENT_TOOL_ID VARCHAR(50) This parameter contains the toolID or code field from the CampusTool
table of the Campus tool that changed the record if the change was
initiated within most parts of the Campus application.

Required Output

Conditional procedures must produce a result set containing a single record with a single value of 1 or 0 (as
a bit or integer data type). Values of 1 indicate the event continues to process and actions continue to run. All
other results cause the event to stop being processed and actions are skipped.
Recipient procedures must produce a single result set that contains a single column of userID from the
UserAccount table of potential recipients.
Field procedures must produce a result set with a single record. To allow the user interface to name the
fields in the email body WYSIWYG editor, the result set should name all fields with a user-readable name.
Fields that are not named result in a default name of the column number in the result set.
Action procedures should not produce any results, as they are not processed. If an exception is thrown
during execution, only the error is logged.

The following is an example stored procedure:

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 23

CREATE PROCEDURE [cust].[PSD123_InsertedCriticalBehaviorRole_Field]
@IC_EVENT_ACTION_TYPE CHAR(1),
@IC_EVENT_TIMESTAMP DATETIME,
@IC_EVENT_TABLE VARCHAR(128),
@IC_EVENT_COLUMN VARCHAR(128),
@IC_EVENT_KEY_ID INT,
@IC_EVENT_PERSON_ID INT,
@IC_EVENT_CALENDAR_ID INT,
@IC_EVENT_SCHOOL_ID INT,
@IC_EVENT_DISTRICT_ID INT,
@IC_EVENT_DATA VARCHAR(MAX),
@IC_EVENT_USER_ID INT,
@IC_EVENT_TOOL_ID VARCHAR(50)
AS
SELECT TOP 1 r.role, c.[name] calendarName, CONVERT(VARCHAR, i.[timestamp], 101) incidentDate
FROM dbo.BehaviorRole r
INNER JOIN dbo.BehaviorEvent e ON e.eventID = r.eventID
INNER JOIN dbo.BehaviorIncident i ON e.incidentID = i.incidentID
INNER JOIN dbo.Calendar c ON r.calendarID = c.calendarID
WHERE r.resolutionID = @IC_EVENT_KEY_ID

Add a Record to the CampusEventProcedure Table
A record should be inserted into the CampusEventProcedure table. This causes the procedure to be available as an
option in the correct location in the configuration tools. The CampusEventProcedure has the following columns
that should be provided:

Column
Name

Description

procedure Name of the stored procedure as it exists in the database. For example,
"PSD123_InsertedCriticalBehaviorRole_Template".

displayName Name visible in the dropdown list in the configuration tools. For example, "Behavior fields
for critical involvements".

hidden A boolean value that can be used to hide options. Normally this is zero (0) for available
stored procedures.

procType This is used to identify stored procedures as either an action (Action stored procedures),
condition (Condition stored procedures), query (Field stored procedures) or userquery
(Recipient stored procedures).

schema This is the name of the schema in which the stored procedure is located. For customer
provided procedures, this should be cust (while procedures created by Infinite Campus
typically use dbo).

Best Practices for Stored Procedures
Test all event configurations in a staging or test environment first, even if changes are small .

Turn on event logging while testing to assist in verifying behavior.
Be thorough when checking all ways that users may affect the data of interest.
Be thorough when checking all possible conditions of the data before and after a change that causes an
event.

Do not use poor-performing statements in stored procedures .

This may cause overall application performance issues.
When defining events, be specific. Use built-in filters for insert/update/delete and specify a column with
before/after data values where possible. That allows the application to avoid as much processing work as
possible.

Copyright © 2010-2024 Infinite Campus. All rights reserved.
Page 24

Avoid database object name collisions and always specify schema with the schema prefix on object
names.

If a table named Enrollment is created in the cust schema, it may cause unusual application issues (and not
just in Events & Actions), since there is an enrollment table in the dbo schema. Parts of the application may
not correctly qualify which Enrollment table, and instead of using the Campus table located in the dbo
schema, it may find the different table in the cust schema.
Always qualify names with the schema prefix to avoid potential issues. This is especially important for SQL
statements in procedures that are themselves not located in the dbo schema.

Don't assume conditions in the database .

Since processing is done asynchronously after an event has fired, data may have changed in the intervening
time frame. An event may fire for a new record of interest, but by the time processing of that event occurs,
that record may have been deleted or updated (perhaps it was created by mistake). It is good to confirm
important aspects of the data for an event by querying for them as part of the process.
A JOIN clause or an EXISTS sub-query to the record in question that checks desired conditions avoids
unwanted processing or errors in processing.

Make sure rules enforced in Infinite Campus are similarly enforced in your procedures .

Don't insert invalid values.
Insert all required fields.
Don't violate application expected states. Attendance, Roster and Enrollment records must have consistent
dates for Infinite Campus to properly function in some areas like Attendance Reports.

Avoid loops and event "amplification" in events.

If processing one event causes a second event, make sure the second event does not eventually cause the
first event again. Loops like this may cause serious issues including eventual application failure.
Avoid events fired by changes in these tables as that may cause processing loops as well. Normal processing
of events can modify event tables and messenger related tables.
Avoid events that cause multiple secondary events, which may cause multiple further events, etc. This
amplification may cause significant performance issues if processing volume is high.

